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Introduction

» GANs can generate realistic synthetic
images. But in generating synthetic
tabular data, state-of-the-art
GAN-based models cannot outperform
simple Bayesian network models as
shown on Table 1.

» The challenges of generating synthetic
data using GANs are the
non-Gaussian multimodal distribution
of continuous columns and
imbalanced discrete columns.

» We design CTGAN to address these cha
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Table 1: The number of wins: Deep
learning vs. Bayesian Networks on 8
real datasets.

outperforms
Method CLBN PrivBN

MedGAN, 2017 1 1
VeeGAN, 2017 O 2
TableGAN, 2018 3 3
{ 8

CTGAN

lenges. CTGAN uses mode-specific

normalization to effectively represent continuous values from different

distribution; and uses a conditional generator and a training-by-sampling method

to learn imbalanced discrete columns.
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Figure 2: Conditional generator and training-by-sampling in CTGAN model.
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Figure 1: Mode-sepcific normalization can infer the number of modes in a continous
column, then represent the column as a scalar value in range [—1, 1] and a one-hot

vector.

Evaluation Metrics

» For simulated data, we evaluate (1) the likelihood of test data on learned
distribution as Lest, (2) and the likelihood of synthetic data on original data

distribution as Lgyp,.

» For real data, we train classifiers or regressors on the synthetic data and evaluate

prediction metrics on real test data.
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Figure 3: Evaluating efficacy of synthetic data.
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Experiments

Datasets:

3 Gaussian mixture datasets. w
5 Bayesian network datasets. GM Sim. BN Sim. Real
SRE:j:t(:atasetS. Method £syn Liest ﬁsyn Liest clf reg

Our CTGAN model outper. | 1demtity -261 -261 -0.33 -9.36 0.743 0.14

e s other BNobased and CLBN -3.06 -7.31 -10.66 -9.92 0.382 -6.28
CAN-baced models o Caye. | TableGAN -824 412 -11.84 -10.47 0.162 -3.09

sian mixture datasets and CTGAN -5.72 -3.40 -11.67 -10.60 0.469 -0.43

real datasets.
Ablation Study:

» We replace mode-specific normalization with a simple min-max normalization.
The performance drops 25.7%.

» We disable the training-by-sampling method, the performance decreases 17.8%.

» We disable the conditional generator as well as training-by-sampling, the
performance descreases 36.5%.

Conclusion

In this paper we attempt to find a flexible and robust model to learn the distribu-
tion of columns with complicated distributions. We observe that none of the existing
deep generative models can outperform Bayesian networks which discretize continu-
ous values and learn greedily. We show that our model can learn better distributions
than Bayesian networks. Mode-specific normalization can convert continuous values
of arbitrary range and complicated distribution into a bounded vector representation
suitable for neural networks. And our conditional generator and training-by-sampling
can overcome the imbalanced training data issue. As future work, we would derive a
theoretical justification on why GANs can work on a distribution with both discrete and
continuous data.



