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Introduction

I GANs can generate realistic synthetic
images. But in generating synthetic
tabular data, state-of-the-art
GAN-based models cannot outperform
simple Bayesian network models as
shown on Table 1.

I The challenges of generating synthetic
data using GANs are the
non-Gaussian multimodal distribution
of continuous columns and
imbalanced discrete columns.

Table 1: The number of wins: Deep
learning vs. Bayesian Networks on 8
real datasets.

outperforms

Method CLBN PrivBN

MedGAN, 2017 1 1
VeeGAN, 2017 0 2

TableGAN, 2018 3 3

CTGAN 7 8

I We design CTGAN to address these challenges. CTGAN uses mode-specific
normalization to effectively represent continuous values from different
distribution; and uses a conditional generator and a training-by-sampling method
to learn imbalanced discrete columns.

Mode-specific Normalization

Model the distribution of a  
continuous column with VGM.

For each value, compute the  
probability of each mode.

Sample a mode and  
normalize the value.

Figure 1: Mode-sepcific normalization can infer the number of modes in a continous
column, then represent the column as a scalar value in range [−1, 1] and a one-hot
vector.

Conditional Generator

Generator G(.)

Critic C(.)

Score

 z ~  N(0, 1)
Select from
D1 and D2

α

Say D2 is selected

Pick a row from T     with D2 = 1

1, j 	β1, j α2, j 	β2, j d d1, j 2, j α1, j 	β1, j α2, j 	β2, j d d1, j 2, j

train

Select a category
from D2 

D2 D1 

0 0 0 1 0

Say category 1 is selected

Figure 2: Conditional generator and training-by-sampling in CTGAN model.

Evaluation Metrics

I For simulated data, we evaluate (1) the likelihood of test data on learned
distribution as Ltest, (2) and the likelihood of synthetic data on original data
distribution as Lsyn.

I For real data, we train classifiers or regressors on the synthetic data and evaluate
prediction metrics on real test data.
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Figure 3: Evaluating efficacy of synthetic data.

Experiments
Datasets:
3 Gaussian mixture datasets.
5 Bayesian network datasets.
8 Real datasets.
Results
Our CTGAN model outper-
forms other BN-based and
GAN-based models on Gaus-
sian mixture datasets and
real datasets.

Table 2: Benchmark results.

GM Sim. BN Sim. Real

Method Lsyn Ltest Lsyn Ltest clf reg

Identity -2.61 -2.61 -9.33 -9.36 0.743 0.14

CLBN -3.06 -7.31 -10.66 -9.92 0.382 -6.28
TableGAN -8.24 -4.12 -11.84 -10.47 0.162 -3.09

CTGAN -5.72 -3.40 -11.67 -10.60 0.469 -0.43

Ablation Study:
I We replace mode-specific normalization with a simple min-max normalization.

The performance drops 25.7%.
I We disable the training-by-sampling method, the performance decreases 17.8%.
I We disable the conditional generator as well as training-by-sampling, the

performance descreases 36.5%.

Conclusion

In this paper we attempt to find a flexible and robust model to learn the distribu-
tion of columns with complicated distributions. We observe that none of the existing
deep generative models can outperform Bayesian networks which discretize continu-
ous values and learn greedily. We show that our model can learn better distributions
than Bayesian networks. Mode-specific normalization can convert continuous values
of arbitrary range and complicated distribution into a bounded vector representation
suitable for neural networks. And our conditional generator and training-by-sampling
can overcome the imbalanced training data issue. As future work, we would derive a
theoretical justification on why GANs can work on a distribution with both discrete and
continuous data.


